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Abstract

Background. Despite being both preventable and curable, tuberculosis (TB)
remains the world’s leading cause of mortality. Existing sputum-based diagnostic
solutions require expertise and logistics which limit their widespread use in
low-resource settings. Lung ultrasound (LUS) is a promising alternative, being
cheaper, non-invasive, virtually consumable-free and applicable at point-of-care.
However, even expert interpretation is poorly specific or sensitive for the detection
of TB.

Aim. We present a deep learning (DL) algorithm to automate and improve the
diagnostic capacity of lung ultrasound for pulmonary TB.

Methods. Systematic LUS exams were performed on 110 adult patients
suspected of lower respiratory tract infection on presentation at the Lazeret
pulmonology outpatient department in Cotonou, Benin. We use the resulting
2674 LUS images to train an interpretable DL model that classifies patients
into TB+ vs TB- categories based on the sputum-based molecular gold standard
(GeneXpert-Ultra). External validation is performed on an independently
recruited cohort of 30 patients from rural South Africa. We evaluate the relative
diagnostic importance of anatomic positions from which ultrasound images
are acquired. Grad-CAM further highlights the regions of each image the
model finds most determinant. The highlighted regions were then qualitatively
assessed by human LUS experts in order to evaluate the model’s clinical
plausibility by its alignment with physiology and pathology. Finally, results are
compared to a "human baseline" model, which inputs clinician-engineered features.

Findings. The DL model performs significantly better than the model based
on clinician-extracted features (p < 0.001) with a area under the receiver-
operator curve (AUROC) of 0.88 (95% CI [0.86, 0.91]) vs 0.57 (95% CI
[0.56, 0.59]). Moreover, LUS experts assess that anatomic locations used by
the model are relevant and we find that LUS experts and the model make the
same number of incorrect diagnoses. Finally, we find that the DL model perfor-
mance remains stable when using only 3 lung locations compared to all 14 possible.

Conclusion. Automated DL diagnosis from LUS on this population has potential
for TB triage, meeting the WHO criteria for such a tool with 90% sensitivity
and 70% specificity. Further work is required on larger cohorts to improve the
generalisability necessary for real world deployment.



1 Background

1.1 Tuberculosis

While the COVID-19 pandemic had an enormous direct health impact, its indirect disruption of
access to tuberculosis (TB) services was arguably as significant. In 2020 the WHO reported a global
incidence of 10 million cases with 1.3 million deaths: 100’000 more than anticipated, thus marking
the first annual increase in TB-related deaths since 2005. [34].

Among countries with prevalence surveys, 30 are estimated to contribute to 86% of the global
prevalence. Two thirds of this is concentrated in just eight countries, of which South Africa is one,
where the proportion of people with TB reaches 900 per 100’000 [24]. Western Europe, by contrast,
experiences less than 1 death per 100 000 population per year. Indeed, TB is a disease of poverty. Data
from 21 countries shows that TB in turn further compromises financial security: affected households
in these countries spend at least a fifth of their income on TB-related costs [4] [2]. It is the single
largest infectious cause of death, which is particularly remarkable, given that TB is both preventable
and treatable.

1.2 Existing solutions for TB diagnosis

Diagnostic tests. The current methods used for diagnosing TB may have excellent performance in
ideal conditions, but require expertise and logistical organisation that limit their widespread use in
low-resource settings.

The current gold standard for TB diagnosis recommended by the Centers for Disease Control and
Prevention is sputum-based microbiology [11]. However, cultures may take between 4 and 12 days
and require rigorous laboratory expertise and logistics to ensure sample quality and that patients
are not lost to follow-up. Similarly, the nucleic acid amplification geneXpert tests depend upon
investments beyond the scope of most facilities where screening could potentially take place. While
the WHO recommendation is to use these methods to replace the Tuberculin skin test (TST, which
performs sub-optimally in BCG-vaccinated populations [32]) and the sputum smear test (which lacks
sensitivity [14]) many countries still employ these outdated techniques [10] due to the difficultly and
expense of the new recommendations.

Clinical diagnosis. The above tests are usually performed based on clinical and epidemiological
suspicion, where key symptoms (weight loss, prolonged cough, night sweats etc.) and risk exposure
(HIV, TB contact) create a clinical case definition warranting further testing. A chest X-ray can add a
significant amount of sensitivity and specificity but is unable to distinguish between past TB scarring
and new active disease. Further, it exposes patients to ionizing radiation and requires patient mobility
which is unfeasible for severe cases.

1.3 Point-of-care ultrasound.

In contrast, point-of-care ultrasound is a non-ionizing, low-cost and virtually consumable-free tool
which can be deployed at the point-of-care. New ultrasound on a chip technology has made these
tools portable and affordable to remote and low-resource settings. Another benefit of using ultrasound
is the low risk of cross-infection when using a plastic disposable cover on a portable handheld device.

Images are generated in real time by transmitting sound into the tissues by a "transducer" and then
recording those that are reflected back with a "receiver". The time taken for the wave to return
determines depth (rendered as distance on the y axis of the image), while the number of waves
received determines their echogenicity (rendered as brightness). As the presence of an air/tissue
interface scatters ultrasound, nothing is visible past air bubbles. This fact was originally thought to
make lung ultrasound unfeasible. However, it became increasingly appreciated that the presence of
liquid and consolidations at the pleural line made patterns that had high sensitivity and specificity for
the diagnosis of pneumonia, infiltrates and other disease. Until now, however, the infectious aetiology
of the pneumonia could not be determined by ultrasound alone.

See Figure 1A for an overview of this ultrasound image and the acquisition protocol for LUS involving
capturing 14 anatomic sites.
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Figure 1: (A) Overview of the main elements in a lung ultrasound image. (B) The acquisition protocol
of LUS, involving the collection of images from 14 anatomic locations on a single patient

Ultrasound also presents challenges like high inter-operator variability, as the image acquisition and
evaluation demand expertise. For example, a study on the prenatal detection of malformations using
US images demonstrated that the sensitivity ranged from 27.5% to 96% among different medical
institutes[26]. This variability remains a serious challenge in ultrasound-based clinical decision
making. Additionally, as can be seen in Figure 1B, the acquisition protocol requires 14 images, which
is time consuming.

Computer assisted diagnostics which leverage deep learning (DL) could automate interpretation, with
the added potential to detect patterns not visible by the human eye. Such tools have the potential
to decrease variability of predictions [9] [17]. In addition to minimizing operator error, automated
detection affords the possibility of rapid processing of a vast amount of data as well as minimizing
the information needed per patient, thus optimizing the acquisition protocol. A robust automated
system might even be able to guide clinical decision making in scenarios where resources are scarce
and trained personnel are unavailable. Deep Learning has recently made major advances in the field
of medical image analysis [29] [23]. For ultrasound, a review of the application of DL in muscle
imaging underscores the need for more robust methods for image interpretation and advises the use
of DL algorithms to overcome the differences between manufacturers’ devices.[33]

2 Aim and objectives

In line with WHO’s recommendation to expand the use of digital technologies [3] and an increased
need for efficient evaluation of ultrasound images, we develop a new deep learning method to improve
the diagnostic capacity of LUS for TB.

2.1 Objectives

1. Literature review To review the literature for existing methods, guidelines and pitfalls.

2. Preprocessing pipeline To preprocess the data and screen for errors, duplicates and potential
sources of bias.

3. DL diagnostic algorithm To develop a model that predicts the geneXpert TB diagnosis of a
patient using only LUS images as input.
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4. Human baseline algorithm To develop a model that predicts the geneXpert TB diagnosis
of a patient using clinician handcrafted features (i.e. tabular data recording the binary
presence/absence of human-visible patterns in ultrasound).

5. Clinical plausibility of the DL algorithm To evaluate the alignment of the model’s predic-
tions with human expert analysis using interpretability techniques

6. Optimize acquisition To compare the importance given to the different anatomic sites to
find the optimal combination and number images required for prediction.

3 Related work

DL in TB diagnosis. To the best of our knowledge, no AI method using ultrasound images has been
developed to diagnose TB. However, existing works make use of AI for TB diagnosis with different
inputs. For instance, Dande et al. [12] review the use of Artificial Neural Networks (ANNs) as a
diagnostic tool, on which most of the Deep Learning field relies. ANNs draw inspiration from our
brain or the biological neural networking system. The first use of ANNs for TB diagnosis was carried
out in 1999 and aimed at predicting the prevalence of TB from tabular data such as radiographic
findings, symptoms and demographics. The trained model showed a sensitivity of 100% and a
specificity of 72%. Following studies leveraging ANNs reached similar results. Thus, it was derived
that neural networks were a potential diagnostic tool for tuberculosis.

More specifically, Kulkarni et al.[21] analyze the use of DL algorithms to predict TB from chest
radiography. The first DL model for TB detection was created in 2016 by Hwang et al. [20].
They used a model called AlexNet that directly takes images as inputs. The model was trained on
10’800 chest x-rays and reached an AUROC between 0.88 and 0.964 on their test sets. Lakhani and
Sundaram [22] found that their most accurate approach utilized an ensemble of models together with
a radiologist to adjudicate discrepant cases, which achieved a sensitivity of 97.3%, specificity of
100%, and AUROC of 0.99. They suggest that the best use of such algorithms may be to augment to
capabilities of radiologists working in resource-poor regions.

DL in ultrasound. None of the previous works makes use of lung ultrasound, perhaps because
of the poor predictive capacity when interpreted by humans. Brattain et al. [9] review ML appli-
cations for medical ultrasound in general and shows that DL approaches can significantly improve
performance when compared with human interpretation or classifiers operating on handcrafted fea-
tures. Furthermore, they address the need for results to be interpretable by clinicians, which is not
systematic in the previous works. Akkus et al. [5] survey more precisely DL applications of medical
ultrasounds. They assess that the generalization ability of DL-based diagnosis approaches is superior
than traditional ML approaches. Though, it is still hindered by the variability in ultrasound images.
They suggest the use of transfer learning, i.e., pre-training models on large scale image datasets, as
well as data augmentation (e.g. translation, flips, distortion of images) to increase the robustness and
generalization of models.

DL for LUS. While DL has not used ultrasounds to predict TB, extensive resources exist for
COVID-19. Zhao and Bell [35] review such DL models for COVID detection. Among the methods
studied, 6 "out-of-the-box" architectures are used and 3 new architectures are presented to improve
their robustness and generalization. Notably, Born et al. [8] employ class activation maps (CAM) to
improve prediction interpretability. CAM overlays the original ultrasound images with the pixel-wise
importance in the model prediction. Figure 11b illustrates such CAM. The best performing diagnostic
model achieved 94.39% accuracy, 82% precision, 76% sensitivity, and 96% specificity [19] by
leveraging a ResNet architecture [18]. The review establishes that models lack training on balanced
dataset and while interpretable methods exist, they are still not used systematically.
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4 Methods

4.1 Datasets

The cohort comprises 111 adult patients recruited as part of a prospective observational study on the
diagnostic potential of lung ultrasound in TB-endemic regions. Inclusion criteria were consenting
adults with cough and/or dysnopea of any duration. However, patients were excluded if cough
came from a definite non-infectious origin such as asthma or heart failure. Patients were recruited
on presentation at the Lazeret pulmonology outpatient department in Cotonou, Benin between
October 2021 and March 2022. Systematic LUS exams were performed following the protocol
depicted in Figure 1B resulting in an image bank of 2674 LUS images. The labels for TB+ vs TB-
categories are derived from sputum-based molecular gold standard (GeneXpert-Ultra). Of the 111
patients, 40 (36%) are TB+ by sputum-based GeneXpert-ultra and 71 (64%) negative. External
validation is performed on an independently recruited cohort of 35 patients from Tintswalo Hospital
in Mpumalanga South Africa. 6/35 (9%)patients are TB positive. Several negative cases are expected
to be false negatives due to pauci-bacillary yield in HIV+ patients. Benin is considered to have a
moderate-to-low endemicity for HIV and TB, while South Africa has one of the highest incidence
rates in the world of both diseases.

4.2 Literature review

Existing works were first reviewed on PubMed 1 as a source of peer-reviewed medical papers. As we
have seen, the specific combination of DL for TB using LUS is unprecedented. Therefore, the search
was extended to larger scopes. The search on PubMed was conducted using MeSH terms, controlled
keywords with defined and specific significations, combined with the Boolean operator AND. Here is
a list of the different searches:

• Artificial intelligence AND tuberculosis

• Artificial intelligence AND ultrasonography

• Artificial intelligence AND ultrasonography AND SARS-CoV-2

A similar search was conducted in the Cochrane Library 2, which references systemic reviews in
health care and health policy. The only work found was a review of thoracic imaging tests for
COVID-19 [16]. Subsequently, medRxiv 3, a database of medical preprints, and Google Scholar were
searched despite containing unreviewed works for the sake of completeness.

4.3 Data preprocessing

The original data is located on the Butterfly Cloud, where images collected by ultrasound probes are
directly uploaded. The first challenge arises in retrieving images and videos from the online platform,
which used to be done manually, downloading each of them one by one. To address this issue, we
implemented a user-simulating software that fetches all the files in an automated manner. A repetitive
task lasting for a day or two now takes one hour. The tool is public and free of use 4.

Refer to Figure 12a for an example of a LUS image. The images are manually inspected for unusable
images, such as corrupted or zoomed-in images. Unless specified otherwise, all the preprocessing
implementations can be found in the main code repository 5. We check for duplicate images using
a perceptual hash to compare images. The watermark is then removed by comparing a sample
watermark image and finding the corresponding pixel location in the image.

To extract the image position, i.e., from which part of the lung an image has been taken, we make
use of an optical character recognition model called Tesseract [30]. The text extraction can be found
in our repository 4. Once the positions are extracted we remove all text in the image. For that, we
leverage the CRAFT model [6] which gives us bounding boxes containing text in the image. Finally,

1https://pubmed.ncbi.nlm.nih.gov/
2https://www.cochranelibrary.com/
3https://www.medrxiv.org/
4https://github.com/epfl-iglobalhealth/LUS-TB-JulienVignoud
5https://github.com/epfl-iglobalhealth/LUS-COVID-main
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we crop images to remove the scale and make each image square-shaped. See appendix Figure 12a
and 12b for before and after images.

4.4 Deep Learning model

DeepChest. We adapt the DeepChest model [27] because it has been tailored for lung ultrasound
images using similar probes. Its original purpose is COVID-19 diagnosis and prognosis. An overview
of the architecture is represented in Figure 2. The model takes as input lung ultrasound images along
with the anatomic location of acquisition. Images are shaped into feature vectors using a feature
extractor, in our case a pre-trained ResNet [18]. The sites embeddings are created using a positional
encoding similar to the Transformers’ one [31] such that the classifier can easily distinguish from
which position an image comes. Both representations are added and fed into an aggregator, which
combines all the images of one patient into a single representation. The original implementation
uses an aggregator inspired by the natural language processing BERT model [15], which encodes
relationships of words within a sentence, in their case, positions relationships for one patient. Other
aggregators are Min/Max pooling, keeping the image with the most extreme feature values, or
Attention Pooling, in which a neural network is trained to weigh the importance of each image of a
patient. The classifier is a two-layer feed-forward neural network with tanh activation. Adapting
DeepChest from COVID-19 to TB diagnosis required little work as both rely on similar images as
inputs.

Figure 2: DeepChest model architecture. The model takes as inputs LUS images and corresponding
anatomic sites. They are shaped into 512-dimensional feature vectors through the Feature Extractor
and the Site Embedder respectively. The image vector and corresponding site vector are added
element-wise and all the resulting representation of a single patient are combined into a single vector
by the Aggregator. The classifier predicts a TB diagnosis based on a patient’s representation.

Hyperparameters. The DL model hyperparameters are fine-tuned using 5-fold cross validation
and evaluated on a separate test split. As one model instance is trained for each of the 5 fold, the 5
models are evaluated on the test set and will result in a mean performance along with 95% confidence
interval.

Interpretability. In order to provide interpretable results, we compute class activation maps (CAM)
of the last layer of the feature extractor using the Grad-CAM method [28]. By looking at the neuron
activity we can measure the importance of each pixel in the diagnosis. Thus, it enables us to evaluate
on which images and locations the model relies to make its predictions. The resulting CAM are
assessed by LUS experts.

4.5 Baseline model from clinician-extracted features

As there are no robust estimates on the human capacity for TB diagnosis from LUS, we develop a
baseline a model using handcrafted features by clinicians. Here, two double-blinded experts assess
each LUS image and grade it on a an ordinal pathology scale from 0 to 6 as described in Table 3.
From these values, features are engineered and explained in Table 4. The features are then fed into a
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model, which will be selected and fine-tuned through cross validation among Logistic Regression,
SVM and Random Forest.

We will compare the DL and the clinician models, the latter being the baseline we are aiming to
reach and outperform. For a strict comparison, both models will be trained and then evaluated on the
same sets, sets being different between training and testing. Furthermore, the cross-validation will be
conducted for both models using the same splits.

4.6 Clinical qualitative assessment

To measure the alignment between the predictions and the physiology/pathology, LUS experts review
a set of 20 predictions, one per patient. For each patient, clinicians are shown its LUS images as well
the CAM overlay, similarly to Figure 11. Clinicians are given from which sites each image comes
from but don’t know what is the patient gold standard diagnosis nor the model prediction. Clinicians
answers 4 questions for each of the 20 patients:

1. Image Relevance: Are the most highlighted images the most clinically relevant in the image
series?

2. Region Relevance: Do the highlighted regions correspond to the most clinically relevant
areas within each image?

3. Physiological Alignment: Are these regions on lung/pleural tissue?
4. What is your diagnosis?

For the first three questions, clinicians can answer with not at all relevant, somewhat relevant or
mostly relevant, later converted to -1, 0 or 1 respectively. The scores are averaged across clinicians
yielding three scores for each patient (image relevance, region relevance and physiological alignment).

The 20 patients are chosen according to the model predictions: patients are randomly selected such
that there are 5 true positives, 5 true negatives, 5 false positives and 5 false negatives. By construction,
the model accuracy, sensitivity and specificity on these patients are 0.5. Patients are chosen in such a
way in order to analyze the CAM both when the model is correct and when it is mistaken.

4.7 Anatomic site relevance for acquisition optimisation

To reduce the number of acquired images needed, we assess the relative importance of the anatomic
positions to identify the minimum number of positions (and their optimal combination) needed to
reach similar performances.

We optimize the search, to avoid the costly process of iterating through all possible permutations.
Firstly, we test how each position performs when used individually for predictions. Secondly, we take
advantage of the attention pooling mechanism to observe the weight given to each position during
validation and use it as an ordering of position usefulness. In other words, positions with higher
average attention weights may be more important than those with lower values.

To exploit this ordering, we perform an experiment similar to recursive feature elimination (RFE):
starting with all the positions we will eliminate the position with the least attention until only one
position is left. We perform two variations of this experiment:

1. Training RFE: with decreasing number of positions, train and evaluate the model with
the remaining positions (Answering the question of: "What is the minimal amount of data
needed for training?")

2. Evaluation RFE: train the model once with all the positions and then successively evaluate
it on the remaining positions without training it again. (Answering the question of: "Given a
trained model, what is the minimal amount of data needed at inference?")
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5 Results

5.1 Dataset

Each patient had an average of 24 images. According the the protocol, we anticipate 24 images
per patient from 14 anatomic sites where 10 are taken in 2 standard depths, the remaining 4 lateral
positions (QLD, QLG, QSLD and QSLG) are taken in 1 depth only. Figure 3 shows the frequency
of each position across all patients. We can see that position representations are somewhat uneven,
where QAIG, QPID and QPIG are notably fewer than anticipated, likely due to their placement close
to the heart (QAIG) or difficult posterior access on supine patients unable to mobilise (QPID and
QPIG).

Figure 3: Distribution of anatomic position among all images

Figure 4 shows the discrepancy in the number of images per patient, ranging from 11 to 32. These
disparities illustrate the need for model robustness.

Figure 4: Distribution of images per patient

5.2 Deep learning model performance

The model was trained by optimizing the binary cross-entropy loss and evaluated with AUROC
and balanced accuracy. Among the different aggregators, attention pooling yielded the best results.
Another optimized hyperparameter was the independent image dropout: the proportion of input
images dropped per patient. Interestingly, the best dropout was 0.7, i.e., the predictions were best
when 70% of input images were dropped. While increasing the dropout, the AUROC stays stable but
the 95% confidence interval across the test folds is greatly reduced. Such a result may be explained
by the high correlation between same site images, multiple images being taken for each site, as
well as the high variation in the number of images per patients. Indeed, a higher dropout may
reduce overfitting and increase the robustness to differences between patient’s images. The optimal
hyperparameters found are reported in Table 5.
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Furthermore, the model was evaluated on the RSA (South Africa) dataset and the different model
performances are shown in Table 1 and Figure 5. The Clinician Benin model is discussed in the next
subsection. We can see a performance difference between the two cohorts, possibly explained by
overfitting, lack of generalization or differences in image acquisition. This point is further discussed
in the Section 6. WHO guidelines for tuberculosis triage tests advise for 90% sensitivity and 70%
specificity [25]. The specificity objective is already fulfilled by the DL Benin model and the sensitivity
threshold is almost reached, suggesting potential for the use of such models to predict TB.

Model AUROC Balanced Accuracy Sensitivity Specificity

DL Benin 0.88 [0.86, 0.91] 0.81 [0.79, 0.82] 0.84 [0.80, 0.88] 0.76 [0.71, 0.81]

DL RSA 0.74 [0.71, 0.77] 0.69 [0.66, 0.73] 0.63 [0.53, 0.73] 0.75 [0.69, 0.81]

Clinician Benin 0.57 [0.56, 0.59] 0.51 [0.51, 0.51] 0.38 [0.38, 0.38] 0.64 [0.64, 0.64]

Table 1: Test metrics of the different models. Results are reported with the mean and 95% confidence
interval.

Figure 5: Model comparison based on test AUROC

5.3 Clinician model baseline

Among random forest, logistic regression and SVM, the best model based on the clinician-extracted
features was the random forest, with gini criterion, 200 trees and a maximum depth of 200. An
AUROC comparison is illustrated in Figure 5 and the exact results are reported in Table 1. We can
see that the result is near random with a statistically significant performance distinction between the
DL model and the clinician model, the former reaching 0.9 AUROC compared to 0.6 for the latter
(p < 0.001).

Furthermore, we can compare Youden’s J statistic of both model diagnoses on Figure 6. The statistic
measures the performance of a binary diagnostic test through a value between 0 and 1. A zero value
denotes a useless test while a value of 1 signifies the test is perfect, without false positive nor false
negative. The clinician model has a J statistic of 0.45 while the DL model diagnosis reaches 0.66.
The Figure 6 shows the score predicted for each TB positive and negative patients by the two models.
Patients with scores above 0.5 are predicted TB positive. We can see that more TB negative patients,
denoted by white bars, are given lower scores by the DL model than by the Clinician model. We can
observe a similar effect for TB positive patients.
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(a) Clinician model predictions

(b) DL model predictions

Figure 6: Prediction comparisons along with main metrics and Youden’s J statistic

5.4 Clinician qualitative assessment

The model predictions were reviewed by three different LUS experts, answering for each patient
questions listed in Section 4.6. We only analyze positive model predictions due to the Grad-CAM
mechanism: further work is needed to interpret negative predictions.

Overall, we observe in Table 2 that scores, taking value between -1 and 1, are positive. Hence, the
diagnoses are considered relevant. Particularly, selected images for true positive DL predictions are
systematically evaluated as relevant by clinicians. We notice similar patterns for region relevance and
physiological alignment: true positives cases almost always score perfect relevance. It is interesting to
note that false positives are still considered relevant despite having lower scores than the true positives
locations. Hence, we can see a correlation between the diagnosis correctness and the highlighted
locations relevance evaluated by clinicians.

DL prediction class Image relevance Region relevance Physiological alignment

TP 1 0.8 1

FP 0.53 0.13 0.53

Table 2: Overall question scores w.r.t the DL prediction class. The minimum is -1, for totally
irrelevant, and the maximum is 1, for totally relevant.

Finally, the clinicians are asked to diagnose each patient. In average, they correctly diagnose 52%
of the patients, compared to 50% by construction for the model. In other words, LUS experts make
almost the same number of mistakes as the model on this set of patients.

However the incorrect diagnoses are not made on the same patients as the model. As we can see in
Figure 7a for correct clinicians diagnoses, the model predictions are evenly distributed between true
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positives, true negatives but also false positives: the model struggles more than clinicians to classify
some TB- patients. For incorrect clinician answers, in Figure 7b, most patients are classified as false
negatives, hence, showing that both model and clinicians are making mistakes when diagnosing some
TB+ patients.

(a) For correct clinician diagnoses, the percentage of
clinician answers falling in each DL prediction class (TP,
TN, FP, FN)

(b) Idem for incorrect clinician diagnoses

Figure 7: DL prediction class percentages when clinicians are correct vs incorrect. For instance,
the percentage of the TP class for correct clinician diagnoses is the percentage of correct clinician
answers predicted as TP by the model.

5.5 Site importance and combinations

As a first step, we train and evaluate each site individually. We group left and right corresponding
positions as there is no medical evidence of side asymmetries in TB nor empirical (p > 0.05, see
Figure 8a for AUROC comparison). The performances are illustrated in Figure 13. A clear site
importance ordering doesn’t emerge from individual explanatory power.

It is however interesting to notice the statistically significant performance difference between inferior
and superior positions in Figure 8b, with p < 0.001. Indeed, TB is well known to preferentially
occupy the upper part of the lungs [7].

(a) Left vs right sites (b) Inferior vs superior sites

Figure 8: Comparison for asymmetric anatomic performances

Another method to measure site importance may be achieved by looking at the attention pooling
mechanism, extracting the weight attributed to each position by the model aggregator. The average
attention weight attributed to each position in the validation sets is represented in Figure 9a. We can
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see a clear difference in the attention given to different positions. We can notice a threshold, denoted
by the horizontal line, separating the lower 95% confidence interval bound of the different positions.
The 6 positions above this threshold are coloured in a darker blue. We then train and evaluate a
model using only these positions. The test AUROC is reported in Figure 9b, where the 6-site model
is called attention@6. In addition, we evaluate models with both less or more positions, following
the importance ordering given by Figure 9a. Finally, we compare the results with the all sites model
as well as the model based on the lowest attention positions for method validation.

As expected, the lowest attention sites model performs worse and with higher variance than the all
sites model. While attention@5 and attention@8 both perform worse than all sites (p < 0.001), we
observe that attention@6 and attention@7 matches all sites’s AUROC: p > 0.1 we cannot reject the
null hypothesis. We can also note a smaller 95% confidence interval than all sites, maybe denoting a
higher generalization power.

(a) Average attention weights given to each site during
validation

(b) Model performances w.r.t. positions used

In order to find best position combinations in a systematic manner, we proceed with Training RFE and
Evaluation RFE. As a reminder, both successively eliminate the position with lowest attention weight
from the input images, Training RFE trains a new model instance for each number of positions while
Evaluation RFE always uses the all sites model. The test AUROC’s for each number of positions
are reported in Figure 10a and Figure 10b for Training RFE and Evaluation RFE respectively. In
both cases, we observe that the lowest number of positions matching the all sites performance is 3.
In other words, the model performs as good with 3 positions as when fed all 14 sites. This result
suggests high potential for clinician data acquisition improvements.

(a) Training RFE test AUROC w.r.t. the number of
positions

(b) Evaluation RFE test AUROC w.r.t. the number of
positions for

6 Discussion

6.1 Limitations

The main limitation of this work may be the data with which models have been trained and evaluated.
While a sample of a 111 patients may be sufficient to reach better performances than clinicians, it is
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(a) Lung ultrasound sample image (b) Image (a) overlaid with the class activation map, red
means a high weight in the diagnosis prediction while
blue or uncoloured pixels are less useful.

Figure 11: Ultrasound image side-by-side with the pixel-wise importance for the model prediction

not enough to reach the robustness necessary to overcome variability in image acquisition. To address
this issue, increasing the number of patients and images is a first step and including different cohorts
for training and evaluation is necessary, as shown by the performance on the Benin and RSA test sets.

The comparison between the DL model and the clinician model can be made more reliable by
extracting the same features by more clinicians and aggregating results. This way, the reliability of the
experiment could be measured, for instance through Cohen’s Kappa, and the results less dependent
of the inter-clinician variability.

Moreover, the comparison between the Benin and RSA cohorts of DL model performance still lacks
a clinician baseline, which would give a human reference of the dataset diagnosis complexity. In
other words, extracting clinician features on the RSA dataset would complement the performance
comparison between Benin and RSA.

Finally, the gold standard of RSA may be flawed by the high HIV prevalence producing pauci-
bacillary sputum samples and a high number of false negatives. More work is needed to validate
these diagnoses by microbiological culture.

6.2 Future work

A line of work to consider in priority may be to improve the fine-tuning of the model hyperparameters
in the objective to reach the 90% sensitivity threshold advised by WHO. As no other existing method
may be compared, it is important to consider different models, for instance with less parameters or
simpler architectures and assess if similar or better results can be achieved at lower computational
costs.

Indeed, the Benin model trained on all sites takes 150 epochs to converge, roughly 2 hours, which
is half the number of epochs required by its COVID-19 equivalent, but may still have significant
ecological impact. In fact, each model training generates approximately 38.2 gCO2eq according
to the CUMULATOR tool [1]. The completion of this work required around 180 such runs, where
a 5-fold cross validation accounts for 5 individual runs. In total, the sum of all our experiments
accounts for 6.9 kgCO2eq.

Further possibilities to improve the predictive power may reside in using ultrasound videos, with
the added information of tissue displacement through time, or in tabular data such as symptoms or
demographics.

Finally, regarding image acquisition variability, it has been recommended to realize the pre-training
of the feature extractor on medical images rather than real-world images [23]. However, medical
image databases are still multiple order of magnitude smaller than the commonly used ImageNet
[13]. Another method to reduce operator variability may be to integrate real-time AI feedback during
image acquisition in order to standardize the image quality.
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Importantly, all patients may have co-infections/morbidities such as COVID-19, HIV or malaria.
Stratified analysis may help explain the distribution of accuracy in vulnerable subgroups like HIV
and diabetes.

6.3 Conclusion

Addressing the need for new TB diagnosis methods in low-resource settings as well as the lack of
existing solutions in the literature, we developed a DL model meeting WHO criteria and overcoming
the capacity of features handcrafted by clinicians. Moreover, the model is able to work successfully
from only 3 body locations hence showing great potential to optimize the image acquisition protocol
followed by clinicians. The model has been validated on a different cohort and qualitatively assessed
by LUS experts. Meeting the interpretability necessity of the diagnosis, the prediction alignment
with physiology and pathology can be measured by looking at location importance for the prediction.
Further work is needed to explore other solutions and improve the method’s robustness towards real
world application.
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A Appendix

Code Interpretation

0 A-lines, normal lung sliding

1 B-lines (3 or more per field)

2 Coalescent B-lines

3 Subplerual pathology smaller than 1cm

4 Consolidation greater than 1cm

5 A-lines, absent lung sliding (pneumothorax suspicion)

6 Pleural effusion

Table 3: Code meaning attributed to each site by clinicians during image acquisition
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Type Features Interpretation

Binary Features

Any quadrant with 0
1 if the patient has an image
with value 0, 0 otherwise

Any quadrant with 1
Any quadrant with 2
Any quadrant with 3
Any quadrant with 4
Any quadrant with 5
Any quadrant with 6

Any quadrant with >=1
1 if the patient has an image with
value greater or equal to 1, 0 otherwise

Any quadrant with >=2
Any quadrant with >=3
Any quadrant with >=4
Any quadrant with >=5

Bilateral >1
1 if the patient has one location
where both the left and right
positions have non-zero value

Unilateral >1
1 if the patient has one
position with non-zero value

Apical >1
1 if the patient has one apical position
(upper part of the lung) with non-zero value

Continuous features

Number of quadrants with 0
Number of quadrants with >=1
Number of quadrants with >=2
Number of quadrants with >=3
Number of quadrants with >=4
Number of quadrants with >=5
Number of quadrants with >=6

Total score
Sum of all the image values
attributed to the patient

Table 4: Baseline model’s handcrafted features
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Figure 13: Individual site performances

(a) Lung ultrasound original image (b) Image (a) after preprocessing

Figure 12: Ultrasound before and after preprocessing

Parameter Fine-tuned value

Batch size 32

Learning rate 0.0001

Aggregation type MLP_AttentionPooling

Epochs 150

Independent dropout 0.7

Weight decay 0.0

Minimized metric Validation BCE loss

Embedding dimension 512

Table 5: Result of the hyperparameter fine-tuning
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